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Abstract

Flanking structures around planar discontinuities in an otherwise homogeneous flow develop a characteristic geometry that is potentially a

source of kinematic information about the background flow. Analytical methods were used to calculate the velocity around a thin weak

inclusion (representing a fracture) in linear viscous material. This approach allows modelling of flanking structures to very large strains. The

velocity field around a given flanking structure can be calculated for the complete range of potential background flow fields, provided that the

orientation of the fabric attractor and the bulk shear sense are known. Structures can be undeformed according to these velocity fields and, by

quantifying the misfit between the actual and initial geometry, the vorticity number of the flow field and the duration of deformation

accurately determined. With these two parameters established, the background (bulk) deformation involved in the formation of a specific

flanking structure can be calculated.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently much attention has been paid to folding

structures that develop around a material discontinuity,

first classified as flanking structures by Passchier (2001), but

often in the past described as fault drag. The term refers to

planar or linear markers, such as a foliation or a stretching

lineation (called the host element, HE), which are deflected

around a planar material discontinuity (called the cross-

cutting element, CE), such as a dyke or a brittle fault. The

host element that lies parallel to the symmetry plane of the

structure in the far field is called the central marker line

(CML). During homogeneous bulk deformation, the

presence of the material inhomogeneity induces a hetero-

geneous strain (called perturbation strain) in the vicinity of

the CE, leading to a local deformation and folding of the

marker lines. Several papers dealing with this process have

been published in the past. One of the first authors to

recognise these structures was Hudleston (1989), who
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described folds associated with discrete fractures in glacial

ice. Reches and Eidelman (1995) conducted numerical

experiments on the deflection of marker lines around a

brittle fracture in elastic material. Passchier (2001)

suggested a wide range of mechanisms for the formation

of flanking structures around different possible crosscutting

elements. However, field observations have established that

flanking structures developing around brittle fractures are

the most common examples in nature, and therefore

research has focused on this particular case. Grasemann

and Stüwe (2001) and Grasemann et al. (2003) explored the

different types of flanking structures that develop under

general transpressive shear. It became clear that the type of

structure that develops at small strains mainly depends on

the initial orientation of the fracture ain with respect to the

bulk flow and on the type of bulk flow itself, i.e. on the

kinematic vorticity number Wk (see Means et al., 1980).

Grasemann et al. (2003) proposed a nomenclature system

that divides the wide range of flanking structures developed

in general shear flow into three classes, namely shear bands,

a-type and s-type flanking structures, depending on whether

the apparent sense of shear along the CE (given by the offset

of the central marker line) is antithetic (a-type) or synthetic

(s-type and shear bands) with respect to the bulk sense of

shear. Each of these three types can be further subdivided
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into a normal and a reverse structure, depending on whether

the sense of rotation of the central marker line at the point

where it touches the CE is equal (normal) or opposite

(reverse) to the sense of rotation along the CE (see Fig. 1,

modified after Wiesmayr and Grasemann (2005)). The same

nomenclature is used here. Grasemann et al. (2003) showed

that mirror images of flanking structures exist and that these

cannot be distinguished if the bulk sense of shear is not

known. Reverse a-type flanking structures and reverse shear

bands, for example, cannot be discriminated without

independent information on the bulk sense of shear. A

single flanking structure is therefore not suitable for

determining the bulk sense of shear.

Flanking structures associated with brittle fractures are

frequently found in calcite–dolomite marbles. However,

they also occur in a wide range of other rock types, from

high-grade metamorphic gneisses through to sedimentary

rocks. Although found in rocks deformed over a wide range

of P and T conditions, all these structures have one basic

similarity, namely that a brittle fracture developed under

generally ductile conditions and that the surroundings

subsequently continued to deform in a ductile manner.

The host elements outlining the flanking structures are

usually defined by layering or foliation. Differences in

material properties related to this layering would certainly

have an influence on the development of flanking structures.

However, most investigated outcrops showed little evidence

for important material property differences between marker

layers. Besides the folding in the vicinity of the fractures, no

folding or cuspate/lobate structures related to such

rheological contrasts were observed in the natural examples

considered here.

In this paper, we present a semi-analytical method that

allows forward modelling of the behaviour of an isolated

fracture of finite length in general shear. This method

reproduces laboratory experiments and explains the range of

different structures that may develop. We demonstrate that

dynamic reverse modelling of these structures is also

possible. Reverse modelling simply involves making the

time step negative, as has previously been reported to be

possible for 3-D diapirism (Kaus and Podladchikov, 2001).
Fig. 1. Nomenclature of flanking structures, modified after Wiesmayr and Grasem

either synthetic or antithetic with respect to the bulk sense of shear. For either cas

respect to the sense of shear along the CE. These four cases may occur with either

which leads to a total of eight possible flanking structure geometries.
These tools are then employed to construct an inversion

algorithm, which attempts to find a combination of

parameters (flow field Wk and time t), which ‘unfolds’ the

layering. The inversion algorithm is tested against synthetic

examples and then applied to natural structures to estimate

the flow parameters involved in their formation.

The work by Passchier (2001), Grasemann and Stüwe

(2001), Grasemann et al. (2003) and Exner et al. (2004)

provides a basic understanding of the development of

flanking structures. The results of these studies have shown

that flanking structures are not an unambiguous source of

kinematic information because of the existence of mirror

image geometries. However, if the sense of bulk shear in an

outcrop can be determined by independent shear sense

criteria (e.g. sigma clasts), then flanking structures can be

classified according to Grasemann et al. (2003), and this

classification suggests a potential for constraining the Wk of

the flow field from the geometry of natural flanking

structures. It should be noted, however, that (1) there is an

infinite range of combinations of a and Wk, (2) correspond-

ing changes in geometry are quite subtle and require an

analysis of the complete geometry and not just particular

components, and (3) natural flanking structures are finite

strain structures that have evolved with time (cf. Exner et

al., 2004). The question remains whether the differences in

the finite strain field, expressed by the geometry of marker

lines, are sufficient to determine the bulk flow conditions

under which the structure formed.
2. Methodology

In this study, analytical methods were used to investigate

the development of flanking structures. The brittle fracture

embedded in a ductile material was modelled as a thin,

weak, linear viscous inclusion embedded in a stronger linear

viscous matrix. The assumption of linear viscous behaviour

is justified by the numerical results of Grasemann and Stüwe

(2001), who found that there is no significant difference in

results obtained for linear and power-law viscous

rheology. The relevant analytical solution was derived by
ann (2005). The sense of shear along the crosscutting element (CE) can be

e, the drag of the central marker line (CML) may be normal or reverse with

extensional or contractional offset of the central marker line along the CE,
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Schmid (2002) and Schmid and Podladchikov (2003). This

solution allows the velocity, stress and pressure distribution

around an elliptical inclusion of arbitrary orientation to

be calculated for any general shear flow field. Both the

ellipticity of the inclusion and the viscosity ratio can be

chosen in the interval (1,N). The approximation of a brittle

fracture by a very thin, weak ellipse is therefore possible and

any effects caused by the curvature of the hinge of the

ellipse may be neglected for large ellipticity values. All

experiments in this study were done using an inclusion

aspect ratio of 107 and a clast/matrix viscosity ratio of

10K12. By introducing marker points around the fracture

and applying an implicit time stepping algorithm, flanking

structures can be calculated for any flow field Wk and any

initial fracture orientation ain, which is the angle between

the stretching eigenvector of the flow and the fracture,

following the usual mathematical convention (i.e. counter-

clockwise positive). Such an analytical method is both very

accurate and computationally efficient when compared with

numerical methods, such as finite element modelling. There

is also no limit to the strain that can be achieved when using

analytical methods. However, there is little advantage in

calculating results to high strain, because only low strain

natural flanking structures can be usefully analysed. With

increasing bulk strain, the marker line pattern around the CE

quickly becomes so distorted that details of the flanking

structure geometry are no longer discernible (Exner et al.,

2004).

The analytical solution allows the forward modelling of

flanking structures in arbitrary flow fields Wk and for

arbitrary initial orientations ain. By simply reversing the

flow field, the resultant finite structure can obviously be

transformed back into its starting configuration. Such

reverse modelling can be used to determine the initial

fracture orientation ain and allows the determination of the

unknown flow field Wk for an arbitrary flanking structure.
Fig. 2. Angular velocity of a fracture in general shear. The flow type is

indicated on the horizontal axis by the angle b between the two flow

eigenvectors, which is related to the kinematic vorticity number by the

relationship WkZcos(b). The stretching eigenvector of the flow is kept

horizontal in all cases. The fracture rotates fastest when in a 908 orientation

in simple shear (with a rotation rate equal to the shear strain rate) and not at

all (stable orientation) when parallel to one of the two flow eigenvectors.

The overall rotational behaviour is identical to that of a passive marker line.
3. Behaviour of flanking structures during progressive

deformation

Depending on the initial fracture orientation ain and the

flow field, different types of flanking structures develop at

small strains (Grasemann et al., 2003). During progressive

deformation, these structures rotate, change continuously

and may even develop into a different type of flanking

structure. Depending on its orientation and the background

flow field, the CE rotates at different velocities. However,

what is not unequivocally established is whether orien-

tations exist in a particular flow field for which the CE does

not rotate at all. In this special orientation, flanking

structures that develop would be recognizable over a long

period of progressive deformation because of their stable

orientation.

The analytical formulations of Schmid (2002) and

Schmid and Podladchikov (2003) allow the calculation of
velocities at every point along the fracture (represented in

two dimensions by a thin, weak elliptical inclusion). These

velocities can be factored into fracture-parallel and fracture-

perpendicular components. The fracture-parallel com-

ponents describe the stretching/shortening of the fracture,

whereas the components perpendicular to the fracture

describe its rotation. If the velocity components perpen-

dicular to the fracture are zero, the fracture does not rotate

and only shortening or stretching of the fracture occurs. If

any orientation exists where the velocities perpendicular to

the fracture are zero at any time during progressive

deformation, the fracture will remain in this stable

orientation, and subsequently only shortening or stretching

of the fracture will occur.

To investigate the rotation behaviour of brittle fractures

embedded in linear viscous material, the fracture-parallel

and fracture-perpendicular velocities were calculated and

the angular velocity _u determined for each point of the

fracture. The angular velocities were found to be equal for

all points of a fracture, implying that the fracture remains

straight during deformation. Fig. 2 shows the normalized

rotation rate _u= _g of the elongate inclusion approximating a

fracture in flow field–orientation space. The contour plot

shows two straight lines where the rotation rate is zero,

which corresponds to the orientation of the eigenvectors of

the flow field. Bobyarchick (1986) pointed out that a 2D

flow field has two eigenvectors, one being the stretching

eigenvector and the other being the shortening eigenvector

of the flow. The stretching eigenvector is also called the

fabric attractor (Passchier, 1997), because linear structural

elements tend to align parallel to this vector during

deformation. Fig. 2 shows that single isolated fractures

embedded in a linear viscous material have no other stable
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orientation than those parallel to the flow eigenvectors.

Furthermore, the rotational behaviour is the same as that of a

passive marker line. With increasing elongation the rotation

behaviour of any elliptical inclusion will approach that of a

passive marker line, regardless of the viscosity contrast. The

difference is already small for an ellipticity greater than 10.

Fractures developed in an orientation close to that of an

eigenvector rotate very slowly with increasing deformation,

and flanking structures that develop in such orientations are

therefore preserved over a much wider range of bulk strain.

This is a possible explanation for the observation of stable

positions in fig. 5 of Grasemann et al. (2003), where

experiments were only conducted up to small bulk strains.
Fig. 3. Example of a normal s-type flanking structure modelled in dextral

transpressive shear. The vorticity number Wk was 0.93Zcos(b), the initial

fracture orientation ainZ1158, and the dimensionless time tZ4.20. The

fabric attractor is parallel to the marker lines in the far field (i.e. horizontal

across the diagram).
4. Dynamic reverse modelling of flanking structures

Grasemann et al. (2003) showed that instantaneously

developing structures are not unique with respect to the

three parameters that were used in their nomenclature

(normal or reverse/a- or s-type/extensional or contractional;

see Fig. 1). Instantaneous reverse a-type flanking structures,

for example, develop in a wide field of different parameter

combinations of vorticity number Wk and initial fracture

orientation ain (fig. 6 of Grasemann et al., 2003). However,

this observation does not exclude the possibility of

determining the flow field and the time that was necessary

to form the finite structure if the perturbed geometry around

the fracture is considered as a whole. In other words, it is not

established if a particular structure is truly unique with

regard to the Wk and t that led to its formation.

To check this hypothesis, an arbitrary flanking structure

first developed in a forward model with known (Wk, t) has

been deformed backwards, applying the full range of

possible bulk flow fields (0%Wk%1). Clearly, the flow

field corresponding to that in which the structure was

formed must ‘undeform’ the flanking structure and trans-

form it back into its initial configuration, i.e. all marker lines

being straight lines, with no offset along the CE. The

important question is how uniquely the (Wk, t)-parameters

can be defined through retro-deformation. If there is only

one flow field for which a perfect transformation of the

flanking structure into its initial configuration is possible,

then the determination is unique and the method may

therefore have potential for establishing flow parameters in

less tightly controlled natural examples.

In order to independently quantify the correspondence

between the initial configuration and the reverse-modelled

structure at any time, control lines are introduced by

digitizing points along the deflected marker lines of the

structure. The straighter these lines, the closer the actual

configuration is to the assumed initial configuration. How

close they are to the initial configuration can be expressed

by introducing a residual R at time t:
Rt Z
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where j denotes the line index, ymeanj
the mean y-position of

the line j at time t, i the point index on the respective line j,

npointsj the number of points in line j, and nlines the total

number of digitized marker lines. In order to compare the fit

of an actual geometry at time t to the initial configuration,

the residual can be defined as RZRt=R0, where R0 is the

residual of the structure at the time tZ0.

The question whether a specific finite structure corre-

sponds uniquely to a certain flow field and time t now

transforms into the question of finding the minimum of the

function R(flowfield, t). If this function possesses a well-

defined global minimum, then it will be possible to find the

correct vorticity number Wk and time t that formed the

flanking structure under consideration. If these two

parameters can be uniquely determined, then the bulk

deformation matrix D is easily found by
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modified after Grasemann et al. (2003).

The procedure described above requires knowledge or

justified assumptions about the initial configuration of the

marker lines. In the case of synthetic flanking structures

calculated from forward modelling, the initial orientation of

the marker lines are known, i.e. the marker lines were straight

andwithout offset. However, as discussed below (Section 4.3),

for natural flanking structures the initial configuration can only

be assumed, with the assumption based on the geometry far

removed from isolated flanking structures.
4.1. Testing the method on normal s-type flanking structures

Fig. 3 shows an example of an arbitrary synthetic normal

s-type flanking structure, calculated using the analytical



Fig. 5. Residual R of the normal s-type flanking structure in Fig. 3. In this

case, only the five dashed lines indicated on Fig. 3 were digitized by hand

and used in the reverse modelling. The residual R is greater than in Fig. 4,

due to the error induced by handpicking the points. Nevertheless, the values

for b and t can still be correctly determined.
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solution for incompressible linear viscous materials. The

values of ain, t and Wk were predetermined but were

assumed to be unknowns during the reverse modelling. The

only information assumed during reverse modelling was

that the marker lines were initially horizontal across the

diagram and parallel to the fabric attractor (i.e. the

stretching flow eigenvector).

The input for the residual calculation consisted of the

(x, y)-coordinates of the marker lines and of the two tip

points of the fracture (which is sufficient, since the fracture

remains a straight line during deformation). The velocity

field around the fracture was then calculated using the

analytical solution for every possible flow field and the

selected markers and the fracture were moved according to

these velocities. At every time step, the residual R was

calculated and plotted in a two-dimensional diagram, where

the horizontal axis refers to the time in dimensionless form

(normalized against 2_3max, which is equal to the stretching

factor S in Grasemann et al. (2003)) and the vertical axis

refers to angle b between the flow eigenvectors of the

applied flow field (where WkZcos(b)). In order to test for

(1) the influence of the number of marker lines used to check

the reverse calculation, and (2) the influence of digitizing

the marker lines and the fracture tips by hand instead of

using the calculated values, the residual of the structure in

Fig. 3 was calculated twice, once using the marker points of

60 forward-calculated marker lines (Fig. 4), and once using

only five marker lines, the coordinates of which were

digitized by hand (Fig. 5).

The results of this reverse modelling of the normal s-type

flanking structure show a minimum of R at bZ21.578, tZ
4.20 in both Figs. 4 and 5. To within two decimal point

precision, these are exactly the values used in the forward

modelling of Fig. 3. For forward and reverse modelling of a

perfect synthetic example, the residual should obviously be
Fig. 4. Residual R of the normal s-type flanking structure in Fig. 3. Sixty

marker lines were used for reverse calculation and the (x, y)-coordinates of

these lines were taken directly from the calculated forward model. The

minimum is well-defined in terms of the vorticity number WkZcos(b), but

not for t.
zero at the minimum. However, the finite time step size and

numerical round-off errors result in a still acceptable

minimum R of ca. 10K3 (Fig. 4). The additional error of

hand digitizing the coordinates of only five lines results in a

minimum R of ca. 10K2 (Fig. 5). Nevertheless, the values

for b and t corresponding to this minimum are the same to

two decimal digits of precision, which is certainly precise

enough for our purpose. It is therefore established that in the

synthetic example, values of b and t can be uniquely

established by reverse modelling of a flanking structure.

The residual plots show that the minimum is much better

defined for b than for t. From this it can be deduced that the

final geometry is strongly influenced by the type of flow

field, but that above a certain strain, the shape of the flanking

structure only changes slowly with further deformation.
4.2. Testing the model on reverse a-type flanking structures

Reverse a-type flanking structures are probably the most

common examples observed in nature. Grasemann et al.

(2003, fig. 6), demonstrated that this type of structure

develops over a wide range of parameter combinations of

ain and Wk. Reverse a-type flanking structures develop in

flow fields with high vorticity numbers as well as in flow

fields close to pure shear, and around fractures of strongly

varying orientations. Despite this spectrum of boundary and

initial conditions, the resulting structures all look very

similar, and differences are not immediately obvious. The

question posed here is whether three synthetic examples of

reverse a-type flanking structures corresponding to different

combinations of ain, Wk and t (Figs. 6–8) are characteristic

enough to allow the boundary and initial conditions to be

determined by reverse modelling. Taking a close look at the

three flanking structures (Figs. 6–8), minor differences in

the geometry can be recognized. In particular, the distance



Fig. 6. Reverse a-type flanking structure, formed in a flow field of WkZ0.89

(bZ27.138), at tZ1.78, for ainZ1258. Fig. 8. Reverse a-type flanking structure, formed in a flow field of WkZ0.29

(bZ73.148), at tZ1.20, for ainZ858.
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from the CE over which the marker lines are deflected

differs for corresponding marker lines in the three examples,

as does the change in curvature as a function of distance

from the CE. Nevertheless, the differences are small. The

reverse modelling procedure was applied to each of the

three reverse a-type flanking structures, and a residual

calculated and plotted in Figs. 9–11. In each case only the

five marker lines and the tips of the fracture were digitized

by hand. A global minimum exists for all three examples.

According to the residual plot of Fig. 9, the flanking

structure in Fig. 6 formed in a flow field with bZ27.138

(WkZ0.89), and the deformation lasted for a time of tZ
1.78. In Fig. 10, a flow field of WkZ0.62 and a time tZ1.57

were found and for Fig. 11, the residual minimum

corresponds to WkZ0.29 and tZ1.20. In all cases, the

values are identical to those used in the forward calculation.

However, the minima are not equally well-defined for all

three structures. Fig. 9 exhibits a sharp minimum with

regard to the flow field, but not time. On the other hand, the

minimum of the residual in Fig. 11 is better constrained with

respect to t than the flow field. The residual of the flanking

structure in Fig. 7 shows a well constrained minimum for both

t and b, but also the occurrence of a pronounced local

minimum for the same flow field, although at a different time.
4.3. Application to natural examples

It is established above that this method can provide

quantitative information on well-defined (synthetic)

flanking structures. However, the application of this method

to natural examples requires certain assumptions to be valid.

In the analytical model, it is assumed that all marker lines

were straight at the time of fracture formation. This
Fig. 7. Reverse a-type flanking structure, formed in a flow field of WkZ0.62

(bZ51.688), at tZ1.57, for ainZ1108.
requirement limits the application to rocks which show a

relatively undisturbed layering or foliation in areas not

affected by the perturbation flow around the fracture. In the

far flow field, the stretching eigenvector is also assumed to

be parallel to the marker lines at all times. This assumption

should hold in nature for the case of strongly sheared zones,

where the foliation is assumed to be aligned parallel to the

fabric attractor (i.e. the stretching eigenvector). Since

flanking structures are mostly small strain structures, the

assumption of a constant flow field orientation during the

time of formation of the structure is justified. The analytical

solution is two-dimensional. An application to natural

examples is therefore only possible if the assumption of

plane strain is justified on the scale of the flanking structure.

Fig. 12 shows an example of a reverse a-type flanking

structure in calcite–dolomite marble from an outcrop in

Naxos, Greece. The bulk shear sense of this zone is known

to be dextral from independent shear sense indicators. The

picture plane of the photograph is oriented perpendicular to

the main foliation as well as perpendicular to the fracture

surface, and the stretching lineation in the main foliation lies

parallel to the plane of the photograph.

The same procedure was applied as described above. The

photograph was scanned, the marker lines and the fracture

were digitized by hand, and then undeformed using different

flow fields Wk. The residual plot is given in Fig. 13. When

comparing this residual plot with those of the synthetic

examples in the previous section, it is obvious that (1) the

minimum is not as well defined as in the synthetic examples,
Fig. 9. Residual R of the structure in Fig. 6.



Fig. 10. Residual R of the structure in Fig. 7.

Fig. 12. Reverse a-type flanking structure in alternating mylonitic calcite

and more dolomitic (darker) layers from Naxos, Greece (GPS coordinates

N37811 023.6 00, E25830 055.100, looking WSW). The white arrows indicate

the sense of shear, which is dextral (established from independent shear

sense criteria).
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and (2) the value ofR is one order of magnitude larger than in

the previous examples. TheK0.9 contour, which corresponds

to a residual of 12% of the initial residual, spans a range of

about 308 for b, ranging from 8 to 378, which corresponds to

vorticity numbers between 0.80 and 0.99.

Although theminimum for b is not as tightly constrained as

in the synthetic examples, the minimum is still quite well

defined.The residual plot therefore does provide a quantitative

estimate of the vorticity number Wk of the flow field during

formation of this specific flanking structure. Once an estimate

of Wk and the time t is known, the retro-deformation can be

visualized by calculating the velocity for every point and

incrementally retro-deforming the photograph of the structure

(Fig. 14). With progressive retro-deformation, the marker

lines are unfolded in the vicinity of the CE, and all lines

become straight at a dimensionless time of tz1.2. Note that

not only the most dominant marker line in the middle of the

figure, but also the much thinner marker lines that lie closer to

the tips of the CE, become horizontal across the diagram. This

visualisation clearly shows that the flow field found in the

reverse modelling procedure indeed undeforms the flanking

structure into an initial configuration inwhich themarker lines

are close to straight and show no offset across the fracture.
Fig. 11. Residual R of the structure in Fig. 8.
5. Discussion

Analytical forward modelling demonstrates that a

fracture forming the CE of an isolated flanking structure

will remain straight and behave like a passive marker line in

terms of rotational behaviour. The only orientations for

which there is no rotation are those parallel to the

eigenvectors of flow. Fractures will rotate toward the

stretching eigenvector (the fabric attractor). The orientation

parallel to the shortening eigenvector is metastable, because

even the smallest deviation away from that orientation will

cause the fracture to then rotate toward the fabric attractor.

The rotational velocity varies depending on the fracture

orientation and a CE that is almost parallel to one of the two

flow eigenvectors rotates very slowly; it might therefore be

perceived as being stable in numerical and analogue

experiments. The rotation of such a CE orientation will

only be obvious if high bulk strains are reached. Our

analytical results establish that none of the different types of

flanking structures has any additional stable position apart

from those parallel to the flow eigenvectors. Unstable (i.e.

rotating) flanking structures can only be preserved up to

moderate amounts of strain. The frequent occurrence of

isolated shear bands, for example, can therefore not be

explained by stabilization or back-rotation against the bulk
Fig. 13. Residual R of the structure in Fig. 12. The absolute minimum

occurs at tZ1.2, WkZ0.95 (bZ188). The contour line is at log10(R)Z
K0.9, which corresponds to a residual of about 12% of the initial residual.



Fig. 14. Retro-deformation of the natural reverse a-type flanking structure

from Naxos, Greece (Fig. 12) in a sinistral transtensional flow field (WkZ
0.95). After tZ1.2, the marker lines are approximately straight without

offset. The corresponding marker lines are indicated with solid white lines,

the position of the fracture with a dotted white line.
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sense of shear. The lack of additional stable positions is in

contradiction to the numerical results of Wiesmayr and

Grasemann (2005), who observed stable positions for CEs

oriented at a low angle to the shear plane in simple-shear

dominated flow fields.

The reverse modelling experiments performed in this

study establish that it is possible to determine the vorticity

number Wk of the flow field and the time t to form a given

flanking structure. As soon as Wk and t are known, the bulk

or background deformation D of the material can be

calculated. The reverse modelling of synthetic flanking

structures previously forward modelled allows a very

precise reconstruction of the values of Wk and t that led

to the formation of a particular structure. A comparison of

the residual plots reveals that the reconstruction is not

equally well constrained for all the flanking structure types

analysed in this study. The residual plot of a normal s-type

structure exhibits well-constrained minima for the vorticity

number Wk, whereas the time t is less well-constrained

(Figs. 4 and 5). This fact is expressed in the elongate shape

of the contours, which are aligned parallel to the time axis in

the vicinity of the minimum. A slight decrease in Wk causes

a strong change in the value of the residual R. This result

indicates that normal s-type flanking structures are most

typical of flow fields with a high simple shear component.

Grasemann et al. (2003, fig. 6) showed that normal s-type

flanking structures only develop in a narrow range of ain–Wk
combinations. However, this range also depends on time t,

since normal s-type flanking structures can evolve from

reverse a-type flanking structures, as was shown by Exner

et al. (2004). As a general observation, it can still be inferred

from the residual plot of Fig. 4 that normal s-type flanking

structures are typical of simple shear dominated flow fields.

Comparing the three reverse a-type flanking structures

shows that they all have well-defined minima for both t and

b (Figs. 9–11). In all three plots, a second local minimum

occurs that is variously pronounced. This second minimum

develops when a flanking structure is retro-deformed

beyond its starting point, so that it rotates further and

crosses the instantaneous shortening axis (ISA). This causes

a change in the sense of shear along the CE, which reverses

the offset acquired between the time point when crossing the

true initial orientation and the ISA. The spacing of the

minima depends on (1) the rotational velocity of the CE in

this range of orientations, and (2) the difference in

orientation between the initial fracture orientation ain and

the ISA. However, the flow field is the same for both

minima and the true minimum has a lower residual and can

still be unambiguously determined.

Reverse a-type flanking structures develop for a much

wider range of combinations of ain and Wk than normal

s-type flanking structures (Grasemann et al., 2003). Reverse

modelling of a specific a-type flanking structure at small to

intermediate bulk strains therefore produces many more

possible combinations of Wk and t with similar values for

the residual R. Nevertheless, it was possible to determine

the exact values of Wk and t for all three very similar

looking structures.

The marker lines record the deformation of the material

in the vicinity of the CE. The reverse modelling experiments

make use of this information to retrieve the vorticity number

Wk. The more characteristic these patterns are, the better is

the approximation of the vorticity number. As a general

rule, flanking structures that exhibit more complex marker

line patterns (many inflexion points along a marker line, fold

amplitudes that are large compared with the fracture length)

give better results than those with simply bent marker lines.

Reverse modelling can be carried out on any marker line

affected by the CE. It is only necessary to know the length of

the fracture and the far field orientation of the marker line.

However, it is not necessary to find the CML, any marker

line affected by the CE contains information on the

perturbation strain. This is an advantage in the field,

because it is often difficult to determine the CML exactly.

In the synthetic examples, the use of five single marker lines

was already enough to determine both vorticity number Wk

and time t to a high degree of accuracy. For a natural

example, all available marker lines should be included in the

analysis to obtain the most reliable estimate of the flow field

Wk and time t.

As would be expected, the natural flanking structure

example from Naxos, Greece, gave a residual map with a

less well-defined minimum than the synthetic examples.
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Nevertheless, the flow parameters could be estimated and,

as show in Fig. 14, the application of these parameters does

indeed produce a retro-deformation of the flanking structure

into its assumed initial configuration. The best fit of all

marker lines is obtained when deforming the natural

example in a flow field of WkZ0.95, which indicates a

shear zone parallel stretching at the time of the structure

formation (cf. Means, 1989). The assumed initial configur-

ation is achieved after a dimensionless time of tZ1.2, when

no offset remains along the CE and all marker lines are

straight and horizontal across the picture.

By reverse modelling the flanking structure, information is

also gained on the initial orientation of the fracture. The

orientation at tZ1.2 in Fig. 14 indicates that it formed at an

orientation approximately parallel to the orientation of the

compressive instantaneous stretching axis (ISA1), which for

isotropicmaterial is itself parallel to thes1-axis (afracturez658,

s1z558). This suggests that the fracture formed as amode-I or

extensional fracture. The formation of mode-I fractures under

upper greenschist to amphibolite facies metamorphic con-

ditions, as is the case for the Naxos example considered here,

would require a dramatic reduction of the effective mean

stress. An isolated fluid pulsewould be one possible trigger for

such mode-I brittle fracture in an otherwise ductile rock. This

hypothesis is supported by the field observation that several

reverse a-type flanking structures, with almost identical

orientations of the CE, are developed throughout the outcrops

and are apparently of the same age.

The analytical model assumes perfect slip along the

fracture surface, with a negligible shear strength of the

fracture itself. For the natural example from Naxos, it is

difficult to extract any information on the conditionswithin the

fracture during the flanking structure formation. The marbles

are now very coarsely recrystallised and no fluid inclusion

trails marking the healed fracture could be found in thin

section. The presence of the flanking structure itself indicates

that continued slip indeed occurred along the fracture.

However, the question remains unanswered why the fracture

did not heal shortly after itwas formed,while the surroundings

obviously continued to deform in a ductile way.
6. Conclusions

The reversemodelling experiments have demonstrated that

it is possible to place quite tight constraints on the kinematic

vorticity number Wk of the bulk flow and the time t (and

therefore the bulk deformation matrix D) involved in the

formation of a particular flanking structure. Three similar-

looking reverse a-type structures each allowed an accurate

determination of the vorticity number and time. These tests on

synthetic examples demonstrated that values for these

parameters can be extracted even for flanking structures of

similar type developed under different conditions. The

example of a normal s-type flanking structure provided well-

constrained information on the flow field, which suggests that
this geometry is typical of simple shear dominated flow. The

reverse modelling of a natural a-type flanking structure

provided quantitative information on the vorticity number at

the time of its formation and allowed a visualisation of this

retro-deformation with the finite structure transformed into its

assumed initial configuration of straight marker lines and no

offset. Flanking structures with well-defined straight fractures

(the cross-cutting element CE) and sufficient initially straight

markers parallel to the fabric attractor of the far flowfield (e.g.

mylonitic fabrics in general shear zones) are therefore good

potential sources of information on the type of flow field (Wk)

and the amount of strain involved in their formation.
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